具有AGC和低噪声麦克风偏置电路的麦克风放大器

\qquad
MAX9814是一款低成本，高品质麦克风放大器，内置自动增益控制（AGC）以及低噪声麦克风偏置。该器件集成低噪声前置放大器，可变增益放大器（VGA），输出放大器，麦克风偏压发生器以及AGC控制电路。
低噪声前置放大器的增益固定为 12 dB ，而 VGA 增益可以根据输出电压和 $\mathrm{AGC门}$ 门限在 20 dB 和 0 dB 之间自动调节。输出放大器具有 $8 \mathrm{~dB}, ~ 18 \mathrm{~dB}$ 和 28 dB 三种可选增益。在没有压缩的条件下，放大器级联可使总增益达到 40 dB ， 50 dB 或 60 dB 。三态数字输人编程设置输出放大器的增益。外部电阻分压器控制AGC门限，单个电容可设置启动／释放时间。三态数字输人还可编程设置启动与释放时间的比， AGC 的保持时间固定值为 30 ms 。低噪声麦克风偏置发生器能为大多数驻极体麦克风提供偏压。
MAX9814采用节省空间的 14 引脚TDFN封装。该器件规定工作在 $-40^{\circ} \mathrm{C}$ 至 $+85^{\circ} \mathrm{C}$ 扩展级温度范围。

应用

数码相机
数字摄像机
PDA
蓝牙耳机

娱乐系统（例如，卡拉OK）
双向通信装置
高品质便携式录像机
IP电话／电话会议

- 自动增益控制（AGC）
- 三种增益设置（ $40 \mathrm{~dB}, ~ 50 \mathrm{~dB}, ~ 60 \mathrm{~dB}$ ）
- 可编程启动时间
- 可编程启动与释放比
- 2.7 V 至5．5V电源电压范围
- 低达 $30 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ 的输入参考噪声密度
- 低达 0.04%（典型值）的THD
- 低功耗关断模式
- 内部提供低噪声麦克风偏置， 2 V
- 采用节省空间的 14 引脚TDFN（ $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ ）封装
- $-40^{\circ} \mathrm{C}$ 至 $+85^{\circ} \mathrm{C}$ 扩展级温度范围
\qquad定购信息

PART	TEMP RANGE	PIN－PACKAGE
MAX9814ETD +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	14 TDFN－EP＊

＋表示无铅 (Pb) ）符合RoHS标准的封装。
$T=$ 卷带包装。
＊$E P=$ 裸焊盘。
引脚配置在数据资料的最后给出。

特性

本文是英文数据资料的译文，文中可能存在翻译上的不准确或错误。如需进一步确认，请在您的设计中参考英文资料。有关价格，供货及订购信息，请联络Maxim亚洲销售中心：10800 8521249 （北中国区），10800 1521249 （南中国区），或访问Maxim的中文网站：china．maximintegrated．com。

MAX9814
 具有 $A G C$ 和低噪声麦克风偏置电路的
 麦克风放大器

ABSOLUTE MAXIMUM RATINGS

VDD to GND
All Other Pins to GND \qquad .$-0.3 V$ to（VDD＋0．3V）
Output Short－Circuit Duration \qquad Continuous
Continuous Current（MICOUT，MICBIAS） \qquad $\pm 100 \mathrm{~mA}$
All Other Pins \qquad $\pm 20 \mathrm{~mA}$

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$ 14－Pin TDFN－EP （derate $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ）．	1481.5 mW
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature	$\ldots . .+150^{\circ} \mathrm{C}$
Lead Temperature（soldering，10s）	$+300^{\circ} \mathrm{C}$
Bump Temperature（soldering）Reflow．	$+235^{\circ} \mathrm{C}$

14－Pin TDFN－EP
（derate $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ）．．．．．．．．．．．．．．．．．．．．．．． 1481.5 mW
Operating Temperature Range ．．．．．．．．．．．．．．．．．．．．．．．．．．．$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
unction Temperature
Bump Temperature（soldering）Reflow．．．．．．．．．．．．．．．．．．．．．．．．．．．．$+235^{\circ} \mathrm{C}$

Stresses beyond those listed under＂Absolute Maximum Ratings＂may cause permanent damage to the device．These are stress ratings only，and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied．Exposure to absolute maximum rating conditions for extended periods may affect device reliability．

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=3.3 V, \overline{S H D N}=V_{D D}, C C T=470 n F, C C G=2 \mu F, G A I N=V_{D D}, T_{A}=T_{M I N}\right.$ to $T_{M A X}$ ，unless otherwise specified．Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ．）（Note 1）

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
GENERAL						
Operating Voltage	VDD	Guaranteed by PSRR test	2.7		5.5	V
Supply Current	IDD			3.1	6	mA
Shutdown Supply Current	ISHDN			0.01	1	$\mu \mathrm{A}$
Input－Referred Noise Density	e_{n}	$\mathrm{BW}=20 \mathrm{kHz}$ ，all gain settings		30		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Output Noise		BW $=20 \mathrm{kHz}$		430		$\mu \mathrm{V}_{\text {RMS }}$
Signal－to－Noise Ratio	SNR	$\mathrm{BW}=22 \mathrm{~Hz}$ to 22 kHz （500mV ${ }_{\text {RMS }}$ output signal）		61		dB
		A－weighted		64		
Dynamic Range	DR	（Note 2）		60		dB
Total Harmonic Distortion Plus Noise	THD＋N	$\begin{aligned} & \mathrm{f} / \mathrm{N}=1 \mathrm{kHz}, \mathrm{BW}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{TH}}=1 \mathrm{~V} \text { (threshold }=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}),} \\ & \mathrm{V}_{\text {IN }}=0.5 \mathrm{mV} \mathrm{RMS}_{\mathrm{RM}}, \mathrm{~V}_{\mathrm{CT}}=0 \mathrm{~V} \\ & \hline \end{aligned}$		0.04		\％
		$\begin{aligned} & \mathrm{f} / \mathrm{N}=1 \mathrm{kHz}, \mathrm{BW}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{T H}=0.1 \mathrm{~V} \text { (threshold }= \\ & 200 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P})}, \mathrm{V}_{\mathrm{IN}}=30 \mathrm{mV} \mathrm{~V}_{\mathrm{RMS}}, \mathrm{~V}_{\mathrm{CT}}=2 \mathrm{~V} \end{aligned}$		0.2		
Amplifier Input BIAS	VIN		1.14	1.23	1.32	V
Maximum Input Voltage	VIN＿MAX	1\％THD		100		mVP－P
Input Impedance	ZIN			100		k Ω
Maximum Gain	A	GAIN $=\mathrm{V}_{\text {DD }}$	39.5	40	40.5	dB
		GAIN＝GND	49.5	50	50.6	
		GAIN＝unconnected	59.5	60	60.5	
Minimum Gain		GAIN $=$ V ${ }_{\text {DD }}$	18.7	20	20.5	dB
		GAIN＝GND	29.0	30	30.8	
		GAIN＝unconnected	38.7	40	40.5	
Maximum Output Level	Vout＿RMS	1% THD + N， $\mathrm{V}_{\text {TH }}=\mathrm{MICBIAS}$		0.707		$\mathrm{V}_{\text {RMS }}$
Regulated Output Level		AGC enabled， $\mathrm{V}_{\text {TH }}=0.7 \mathrm{~V}$	1.26	1.40	1.54	VP－P
AGC Attack Time	tattack	CCT $=470 n F($ Note 3）		1.1		ms
Attack／Release Ratio	A／R	$\mathrm{A} / \mathrm{R}=\mathrm{GND}$		1：500		$\mathrm{ms} / \mathrm{ms}$
		$\mathrm{A} / \mathrm{R}=\mathrm{V}_{\mathrm{DD}}$		1：2000		
		$\mathrm{A} / \mathrm{R}=$ unconnected		1：4000		

具有 $A G C$ 和低噪声麦克风偏置电路的
 麦克风放大器

ELECTRICAL CHARACTERISTICS（continued）

$\left(V_{D D}=3.3 V, \overline{S H D N}=V_{D D}, C C T=470 n F, C C G=2 \mu F, G A I N=V_{D D}, T_{A}=T_{M I N}\right.$ to $T_{M A X}$ ，unless otherwise specified．Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ．）（Note 1）

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
MICOUT High Output Voltage	V OH	IOUT sourcing 1mA		2.45		V
MICOUT Low Output Voltage	VOL	IOUT sinking 1mA		3		mV
MICOUT Bias		MICOUT unconnected	1.14	1.23	1.32	V
Output Impedance	ZOUT			50		Ω
Minimum Resistive Load	RLOAD＿MIN			5		k Ω
Maximum Capacitive Drive	Cload＿max			200		pF
Maximum Output Current	IOUT＿MAX	1% THD，RL＝ 500Ω		1	2	mA
Output Short－Circuit Current	ISC		3	8		mA
Power－Supply Rejection Ratio	PSRR	AGC mode； $\mathrm{V}_{\text {DD }}=2.7 \mathrm{~V}$ to 5．5V（Note 4）	35	50		dB
		$\mathrm{f}=217 \mathrm{~Hz}, \mathrm{~V}_{\text {RIPPLE }}=100 \mathrm{mVP-P}($ Note 5 $)$		55		
		$f=1 \mathrm{kHz}, \mathrm{V}_{\text {RIPPLE }}=100 \mathrm{mV}$ P－P $($ Note 5）		52.5		
		$\mathrm{f}=10 \mathrm{kHz}, \mathrm{V}_{\text {RIPPLE }}=100 \mathrm{mV}$ P－P $($ Note 5）		43		

MICROPHONE BIAS

Microphone Bias Voltage	VMICBIAS	${ }^{\text {M }}$ ICBIAS $=0.5 \mathrm{~mA}$	1.84	2.0	2.18	V
Output Resistance	RMICBIAS	$1 \mathrm{MICBIAS}=1 \mathrm{~mA}$		1		Ω
Output Noise Voltage	VMICBIAS＿NOISE	${ }^{\text {MIICBIAS }}=0.5 \mathrm{~mA}, \mathrm{BW}=22 \mathrm{~Hz}$ to 22 kHz		5.5		$\mu \mathrm{V}_{\text {RMS }}$
		$\mathrm{DC}, \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to 5.5 V	70	80		
Power－Supply Rejection Ratio	PSRR	$\begin{aligned} & \text { IMICBIAS }=0.5 \mathrm{~mA}, \mathrm{~V}_{\text {RIPPLE }}=100 \mathrm{mV} \mathrm{~V}_{\text {P-P }}, \\ & \mathrm{fIN}=1 \mathrm{kHz} \end{aligned}$		71		dB

TRILEVEL INPUTS（A／R，GAIN）

Tri－Level Input Leakage Current		A／R or GAIN＝VDD	$\begin{aligned} & \hline 0.5 \mathrm{VDD} \\ & / 180 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~V} \mathrm{DD} \\ & / 100 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{VDD} \\ & 150 \mathrm{k} \Omega \end{aligned}$	mA
		A／R or GAIN＝GND	$\begin{aligned} & \hline 0.5 \mathrm{VDD} \\ & / 180 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{VDD} \\ & / 100 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{VDD} \\ & / 50 \mathrm{k} \Omega \end{aligned}$	
Input High Voltage	$\mathrm{V}_{\text {IH }}$		VDD $\times 0.7$			V
Input Low Voltage	VIL				DD $\times 0.3$	V
Shutdown Enable Time	ton			60		ms
Shutdown Disable Time	tofF			40		ms
DIGITAL INPUT（ $\overline{\text { SHDN }}$ ）						
$\overline{\text { SHDN }}$ Input Leakage Current			－1		＋1	$\mu \mathrm{A}$
Input High Voltage	V_{IH}		1.3			V
Input Low Voltage	VIL				0.5	V
AGC THRESHOLD INPUT（TH）						
TH Input Leakage Current			－1		＋1	$\mu \mathrm{A}$

Note 1：Devices are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ．Limits over temperature are guaranteed by design．
Note 2：Dynamic range is calculated using the EIAJ method．The input is applied at $-60 \mathrm{dBFS}\left(0.707 \mu \mathrm{~V}_{\mathrm{RMS}}\right), \mathrm{f}_{\mathrm{I}} \mathrm{N}=1 \mathrm{kHz}$ ．
Note 3：Attack time measured as time from AGC trigger to gain reaching 90% of its final value．
Note 4：CG is connected to an external DC voltage source，and adjusted until $\mathrm{V}_{\text {MIICOUT }}=1.23 \mathrm{~V}$ ．
Note 5：CG connected to GND with $2.2 \mu \mathrm{~F}$ ．

MAX9814

具有AGC和低噪声麦克风偏置电路的
麦克风放大器
典型工作特性
$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{C}_{C T}=470 \mathrm{nF}, \mathrm{C}_{\mathrm{CG}}=2.2 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{MICBI}} \times 0.4, \mathrm{GAIN}=\mathrm{V}_{\mathrm{DD}}(40 \mathrm{~dB}), \mathrm{AGC}\right.$ disabled，no load， $\mathrm{RL}=10 \mathrm{k} \Omega$ ，COUT $=1 \mu \mathrm{~F}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

MAX9814
具有 $A G C$ 和低噪声麦克风偏置电路的麦克风放大器

典型工作特性（续）
$\left(V_{D D}=5 \mathrm{~V}, \mathrm{C}_{C T}=470 \mathrm{nF}, \mathrm{C}_{\mathrm{CG}}=2.2 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{MICBI}} \times 0.4, \mathrm{GAIN}=\mathrm{V}_{\mathrm{DD}}(40 \mathrm{~dB}), \mathrm{AGC}\right.$ disabled，no load， $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ ，COUT$=1 \mu \mathrm{~F}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

SMALL－SIGNAL PULSE RESPONSE

$200 \mu \mathrm{~s} / \mathrm{div}$

ATTACK TIME

200us／div
ATTACK TIME

$20 \mathrm{~ms} /$ div

MAX9814

具有AGC和低噪声麦克风偏置电路的
麦克风放大器
典型工作特性（续）
$\left(V_{D D}=5 \mathrm{~V}, \mathrm{C}_{C T}=470 \mathrm{nF}, \mathrm{C}_{\mathrm{CG}}=2.2 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{TH}}=\mathrm{V}_{\mathrm{MICBI}} \times 0.4, \mathrm{GAIN}=\mathrm{V}_{\mathrm{DD}}(40 \mathrm{~dB}), \mathrm{AGC}\right.$ disabled，no load， $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ ， $\mathrm{Cout}^{2}=1 \mu \mathrm{~F}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ，unless otherwise noted．）

引脚说明

引脚	名称	功能
TDFN		
1	CT	定时电容连接，将电容连接至CT控制AGC的启动时间和释放时间。
2	$\overline{\text { SHDN }}$	低电平有效关断控制。
3	CG	放大器直流失调调节，连接一只 $2.2 \mu \mathrm{~F}$ 的电容至GND，确保输出端零失调。
4， 11	N．C．	无连接，接GND。
5	VDD	电源，采用一只 $1 \mu \mathrm{~F}$ 电容旁路至GND。
6	MICOUT	放大器输出。
7	GND	地。
8	MICIN	麦克风放大器同相输人。
9	A／R	三态启动与释放比选择，控制AGC电路的启动时间与释放时间比： $\mathrm{A} / \mathrm{R}=\mathrm{GND}$ ：启动／释放比为 $1: 500$ $\mathrm{A} / \mathrm{R}=\mathrm{V}_{\mathrm{DD}}$ ：启动释放比为 $1: 2000$ $\mathrm{A} / \mathrm{R}=$ 悬空：启动释放比为 $1: 4000$
10	GAIN	三态放大器增益控制： GAIN $=V_{\mathrm{DD}}$ ，增益设置为40dB。 GAIN $=$ GND，增益设置为 50 dB 。 GAIN $=$ 悬空，无压缩增益设置为 60 dB 。
12	BIAS	放大器偏置，采用一只 0.47μ F的电容旁路至GND。
13	MICBIAS	麦克风偏置输出。
14	TH	AGC门限控制，TH电压设置增益控制门限。将TH连接至MICBIAS，禁止AGC。
－	EP	裸焊盘，将TDFN封装的EP连接至GND。

具有AGC和低噪声麦克风偏置电路的
 麦克风放大器

详细说明

MAX9814是一款低成本，高品质麦克风放大器，内置自动增益控制（AGC）以及低噪声麦克风偏置。MAX9814是由低噪声前置放大器，可变增益放大器（VGA），输出放大器，麦克风偏置发生器以及AGC控制电路等多个不同电路组成。

内部麦克风偏置发生器提供 2 V 的偏压，适用于大多数驻极体电容式麦克风。MAX9814分为三级，对输入进行放大。在第一级，输人通过增益为 12 dB 的低噪声前置放大器进行缓冲和放大；第二级则由AGC控制的VGA组成， VGA／AGC组合能够使增益在 20 dB 与 0 dB 之间变化；输出放大器是最后一级，具有 $8 \mathrm{~dB}, ~ 18 \mathrm{~dB}, ~ 20 \mathrm{~dB}$ 三个不同的固定增益，可通过一个三态逻辑输人编程设置。AGC无压缩时，MAX9814能够提供 40 dB ， 50 dB 或 60 dB 的增益。

自动增益控制（AGC）

不具备AGC的器件在输入增益过大时，输出将会出现削波；而在输人增益过大时，AGC能够避免输出削波。图1所示为增益过大的麦克风输人在具有AGC和不带AGC的情况下的比较。

MAX9814的AGC对增益进行控制，首先检测输出电压是否超过预设门限。随后，通过可选的时间常数降低麦克风放大器增益，以修正过大的输出电压幅值。这一过程称为启动时间。当输出信号幅值降低后，增益在很短时间内保持衰减状态，随后输出信号缓慢增加到正常值。该过程称为保持和释放时间。放大器调节输入信号的速度由外部定时电容 $C_{C T}$ 和 A / R 端电压设置。 $A G C 门$ 限可通过 V_{TH} 调节。增益衰减量为输入信号幅值的函数，最大 AGC 衰减为 20 dB 。图2给出了输人突然超出预设门限时，对输出启动时间，保持时间和释放时间的影响。
如果配置的启动时间和释放时间响应太快，增益随信号动态变化而快速调节，常常会产生类似＂砰然＂声（pumping）或 ＂喘息＂声（breathing）的音频噪声。调节AGC的时间常数使其与声源匹配，从而达到最佳效果。对于那些以CD音乐为主要音源的应用来说，推荐启动时间为 $160 \mu \mathrm{~s}$ ，释放时间为 80 ms 。通常情况下，音乐播放设备要比语音或电影等设备需要更短的释放时间。

图1．带有 $A G C$ 和没有 $A G C$ 的麦克风输人

MAX9814

具有AGC和低噪声麦克风偏置电路的
麦克风放大器

图2．输人突然超过 $A G C$ 门限
启动时间
启动时间是指当输入信号超过门限电平后，AGC降低增益所需的时间。增益在启动时间内以指数形式衰减，定义为一个时间常数。该时间常数为 $2400 \times \mathrm{C}_{\mathrm{CT}}$ 秒（其中 C_{CT}是外部定时电容）：
－选取较短的启动时间，以保证AGC快速响应瞬态信号，例如击鼓声（音乐）或枪击声（DVD）。
－选用较长的启动时间，AGC将忽略瞬时峰值，只有当声响明显增加时才降低增益。瞬时峰值并不被衰减，但较响的声音将被衰减。这样可从音量上降低响声，使动态范围最大化。

保持时间
保持时间是指信号降到门限以下，释放过程开始以前的延迟。保持时间内部设置为 30 ms ，并且不可调。当信号超过门限，重新进人启动阶段时，保持时间终止。

释放时间
释放时间是指信号跌落至门限以下，并且经过 30 ms 的保持时间之后，增益回到其正常水平所需的时间。释放时间定义为当输入信号跌落至TH门限以下，并且经过 30 ms的保持时间之后，增益从 20 dB 压缩释放到正常增益的 10%的时间。释放时间可调，其最小值为 25 ms 。释放时间由 C_{CT} 设置的启动时间以及利用 A / R（如表1所示）设置的启动／释放时间比确定：

- 采用小比值，使AGC的速度达到最大。
- 采用大比值，使音质达到最佳，防止AGC重复调节短时间内超出门限的信号。

AGC输出门限
激活AGC工作的输出门限可通过外部电阻分压器调节。完成对分压器的设置后，AGC将降低增益，使输出电压与TH输人端设置的电压相匹配。

麦克风偏置
MAX9814由内部提供低噪声麦克风偏置电压，可驱动大多数驻极体电容式麦克风。调节麦克风偏置至 2 V ，以保证进人低噪声前置放大器的输入信号不被箝位到地。

应用信息

设置启动时间和释放时间
启动时间和释放时间分别由 CT 和GND之间的电容以及 A / R 的逻辑状态（表1）决定。 A / R 为三态逻辑输人，可设置启动与释放时间比。

表1．启动与释放比

A／R	ATTACK／RELEASE RATIO
GND	$1: 500$
VDD	$1: 2000$
Unconnected	$1: 4000$

根据表2所列的相应电容，可以选择启动时间和释放时间。
表2．启动－释放时间

$\mathbf{C C T}$	taTTACK （ms）	A／R $=$ GND	A／R $=$ VDD	A／R $=$ UNCONNECTED
		0.05	25	100
22 nF				
47 nF	0.11	55	220	440
68 nF	0.16	80	320	640
100 nF	0.24	120	480	960
220 nF	0.53	265	1060	2120
470 nF	1.1	550	2200	4400
680 nF	1.63	815	3260	6520
$1 \mu \mathrm{~F}$	2.4	1200	4800	9600

MAX9814
 具有AGC和低噪声麦克风偏置电路的
 麦克风放大器

设置AGC门限
若要设置麦克风输出箱位时的输出电压门限，应在 MICBIAS和地之间连接外部电阻分压器，电阻分压器输出连接到 $T H$ 。电压 V_{TH} 可确定输出箱位时的峰值电压门限。此时，输出端的最大信号摆幅为 V_{TH} 的 2 倍，并保持不变，直到输人信号幅值衰减为止。若要禁止AGC，可将TH连接至MICBIAS。

麦克风偏置电阻

MICBIAS可源出 20 mA 的电流。选择适当的 $\mathrm{R}_{\text {MICBIAS }}$ ，从而为驻极体麦克风提供所需要的偏置电流。一般来说， $2.2 \mathrm{k} \Omega$的阻值对于典型灵敏度的麦克风已经足够了。关于偏置电阻的选择，请参考麦克风数据资料。

偏置电容

MAX9814的BIAS输出在内部经过缓冲，提供低噪声偏压。采用一只 470 nF 的电容将BIAS旁路至地。

输入电容

麦克风放大器的输人交流耦合电容 $\left(\mathrm{C}_{\mathrm{IN}}\right)$ 和输人阻抗 $\left(\mathrm{R}_{\mathrm{IN}}\right)$组成了一个高通滤波器，可滤除输人信号中的所有直流偏置（参见典型应用电路／功能框图）。 C_{IN} 可防止输入信号源的直流成分出现在放大器的输出。假设输人信号源阻抗为零，则高通滤波器的 -3 dB 点为：

$$
f_{-3 d B_{-} \mid N}=\frac{1}{2 \pi \times R_{I N} \times C_{I N}}
$$

选择适当的 $C_{\text {IN }}$ 使 $f_{-3 d B \text {＿IN }}$ 远低于敏感频率。 $\mathrm{f}_{-3 \mathrm{~dB}}$＿IN 设置过高，会影响放大器的低频响应，选择低电压系数的电介质电容。对于交流耦合电容来说，铝电解电容，钽电容或薄膜电介质电容都是很好的选择。高电压系数的电容，诸如陶瓷电容（ 非COG电介质），会加剧低频失真。

输出电容
MAX9814的输出偏置在 1.23 V ，若要消除直流失调，应采用交流耦合电容（ $\mathrm{C}_{\text {OUT }}$ ）。考虑到下一级的输人阻抗 $\left(\mathrm{R}_{\mathrm{L}}\right)$ ， Cout 和 R_{L} 组成高通滤波器。假设输出阻抗为零，高通滤波器的 -3 dB 点为：

$$
\mathrm{f}_{-3 \mathrm{~dB}}^{-} \mathbf{O U T}=\frac{1}{2 \pi \times R_{\mathrm{L}} \times \mathrm{C}_{\mathrm{OUT}}}
$$

关断
MAX9814具有低功耗关断模式。当 $\overline{\text { SHDN }}$ 为低电平时，电源电流跌落至 $0.01 \mu \mathrm{~A}$ ，输出进人高阻状态，麦克风的偏置电流关断。驱动 $\overline{\mathrm{SHDN}}$ 为高电平，使能放大器。请勿将 SHDN悬空。

电源旁路与PCB布局

采用一只 $0.1 \mu \mathrm{~F}$ 的电容将电源旁路至地。缩短引线长度可降低寄生电容，外部元件应尽可能靠近器件放置，推荐选用表贴元件。在同时具有模拟地和数字地的系统中， MAX9814的地与模拟地相连。

MAX9814

具有AGC和低噪声麦克风偏置电路的
麦克风放大器

＊THE DEVICE HAS BEEN CONFIGURED WITH AN ATTACK TIME OF $1.1 \mathrm{~ms}, 40 \mathrm{~dB}$ GAIN，AND AN ATTACK－AND－RELEASE RATIO 0F 1：500．

具有 $A G C$ 和低噪声麦克风偏置电路的麦克风放大器

引脚配置

\qquad芯片信息
PROCESS：BiCMOS
TOP VIEW

＊EP＝EXPOSED PAD

MAX9814

具有AGC和低噪声麦克风偏置电路的
麦克风放大器
封装信息
如需最近的封装外形信息和焊盘布局，请查询 china．maxim－ic．com／packages。

封装类型	封装编码	文档编号
14 TDFN－EP	T1433－2	$\underline{21-0137 ~}$

具有 $A G C$ 和低噪声麦克风偏置电路的麦克风放大器

封装信息（续）
如需最近的封装外形信息和焊盘布局，请查询 china．maxim－ic．com／packages。

COMMON DIMENSIONS		
SYMBOL	MIN．	MAX．
A	0.70	0.80
D	2.90	3.10
E	2.90	3.10
A1	0.00	0.05
L	0.20	0.40
k	0.25 MIN.$$	
A2	0.20 REF．	

PACKAGE VARIATIONS							
PKG．CODE	N	D 2	E2	e	JEDEC SPEC	b	$[(\mathrm{N} / 2)-1] \mathrm{xe}$
T633－2	6	1.50 ± 0.10	2.30 ± 0.10	0.95 BSC	MO229／WEEA	0.40 ± 0.05	1.90 REF
T833－2	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229／WEEC	0.30 ± 0.05	1.95 REF
T833－3	8	1.50 ± 0.10	2.30 ± 0.10	0.65 BSC	MO229／WEEC	0.30 ± 0.05	1.95 REF
T1033－1	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229／WEED－3	0.25 ± 0.05	2.00 REF
T1033－2	10	1.50 ± 0.10	2.30 ± 0.10	0.50 BSC	MO229／WEED－3	0.25 ± 0.05	2.00 REF
T1433－1	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	----	0.20 ± 0.05	2.40 REF
T1433－2	14	1.70 ± 0.10	2.30 ± 0.10	0.40 BSC	---	0.20 ± 0.05	2.40 REF

NOTES：

1．ALL DIMENSIONS ARE $\mathbb{N} \mathrm{mm}$ ．ANGLES IN DEGREES．
2．COPLANARITY SHALL NOT EXCEED 0.08 mm ．
3．WARPAGE SHALL NOT EXCEED 0.10 mm ．
4．PACKAGE LENGTH／PACKAGE WIDTH ARE CONSIDERED AS SPECIAL CHARACTERISTIC（S）．
5．DRAWING CONFORMS TO JEDEC MO229．EXCEPT DIMENSIONS＂D2＂AND＂E2＂，AND T1433－1 \＆T1433－2．
6．＂N＂IS THE TOTAL NUMBER OF LEADS．
7．NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY．
8．MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY．

	TTIE： PACKAGE DUTLINE， $6,8,10$ \＆ 14 L ， TDFN，EXPOSED PAD， $3 \times 3 \times 0.80 \mathrm{~mm}$
－DRAWING NOT TO SCALE－	

MAX9814

具有 $A G C$ 和低噪声麦克风偏置电路的
麦克风放大器
修订历史

\left.| 修订次数 | 修订日期 | | 说明 |
| :---: | :---: | :--- | :---: |$\right]$ 修改页

Maxim北京办事处

北京8328信箱 邮政编码100083
免费电话： 8008100310
电话：010－62115199
传真：010－62115299

[^0]
[^0]: Maxim不对Maxim产品以外的任何电路使用负责，也不提供其专利许可。Maxim保留在任何时间，没有任何通报的前提下修改产品资料和规格的权利。电气特性表中列出的参数值（ 最小值和最大值）均经过设计验证，数据资料其它章节引用的参数值供设计人员参考。

